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Abstract
For a spectrum-generating Lie algebra, a generalized equations-of-motion
scheme determines numerical values of excitation energies and algebra matrix
elements. In the approach to the infinite particle number limit or, more
generally, whenever the dimension of the quantum state space is very large,
the equations-of-motion method may achieve results that are impractical to
obtain by diagonalization of the Hamiltonian matrix. To test the method’s
effectiveness, we apply it to the well-known Lipkin–Meshkov–Glick (LMG)
model to find its low-energy spectrum and associated generator matrix elements
in the eigenenergy basis. When the dimension of the LMG representation
space is 106, computation time on a notebook computer is a few minutes. For
a large particle number in the LMG model, the low-energy spectrum makes a
quantum phase transition from a nondegenerate harmonic vibrator to a twofold
degenerate harmonic oscillator. The equations-of-motion method computes
critical exponents at the transition point.

PACS numbers: 21.60.Fw, 03.65.Fd, 05.10.−a, 64.60.−i, 75.40.Cx, 31.15.Hz

1. Introduction

Suppose the Hamiltonian Ĥ of some quantum system is a self-adjoint operator on a Hilbert
space H, and g is a real Lie algebra of skew-adjoint operators on H. When the commutator of
the Hamiltonian with any Lie algebra operator is an operator in the enveloping algebra, U(g),
of g, then g is said to be a spectrum-generating algebra [1, 2]. If {X̂1, X̂2, . . .} is a basis of a
spectrum-generating algebra (SGA) g, then the following commutation relations are satisfied:

[X̂α, X̂β ] =
∑

γ

C
γ

αβX̂γ ∈ g (1)
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[iĤ , X̂α] = Âα ∈ U(g). (2)

Such algebras characterize dynamical symmetries in physics [3]. In many cases of interest
including the subject of this paper, the Hamiltonian itself is an element of U(g).

A ubiquitous computational physics problem is to calculate the eigenvalues of the
Hamiltonian on the representation space and the matrix elements of Lie algebra elements
with respect to Hamiltonian’s eigenvectors. The eigenvalues are the energy levels of the
system and the matrix elements of other observables in the Lie algebra determine properties
of the system such as transition rates.

In highly favorable situations, eigenvector equations of the Hamiltonian may be solvable
due to the existence of a symmetry subalgebra, g0 ⊂ g, of the spectrum-generating algebra,
comprising operators that commute with the Hamiltonian and, for which the branching rule
g ↓ g0 for the representation of interest is multiplicity free. The hydrogen atom and the
n-dimensional harmonic oscillator are well known to be solvable due to their large symmetry
algebras, o(4) and u(n), respectively. Other systems are said to be exactly solvable when there
exist complete sets of commuting operators which include the Hamiltonian. Such systems,
which can be solved by Bethe ansatz methods, include, for example, some magnetic systems,
such as the one-dimensional Heisenberg spin chain model [4, 5]. Some other Hamiltonians are
quasi-solvable or enjoy a partial dynamical symmetry [6–8]. But, for a generic Hamiltonian,
the ‘brute force’ solution to the eigenvalue problem requires the successful completion of
three steps. First choose a basis for the Hilbert space and calculate the matrix elements of
any Lie algebra element with respect to this basis. The matrix elements of the Hamiltonian,
when an element of the enveloping algebra, can now be computed. Second diagonalize the
Hamiltonian matrix. Third make a unitary transformation to determine the matrix elements
of any Lie algebra element with respect to the basis of energy eigenvectors. The brute force
approach is impractical when the dimension of the Hilbert space is infinite or simply too large.
Moreover, as the present investigation shows, situations arise in which accurate approximate
results cannot be obtained by diagonalization when a given basis is truncated to a tractable
size.

The equations-of-motion solution proceeds in a single step to solve directly for energy
levels and matrix elements with respect to the energy eigenvectors. Equations (1) and (2) form
the system of equations that determine these quantities.

The equations-of-motion method of this paper is founded on three prior developments: a
minimization technique for calculating the irreducible representations of difficult Lie algebras
[9–11], the double-commutator equations-of-motion formalism [12, 13] and the Kerman–
Klein equations-of-motion theory [14–16]. Thus, we refer to it as the RRKK method. Our
generalization of equations-of-motion was applied recently to the five-dimensional quartic
oscillator [17].

This paper applies the RRKK method to the Lipkin–Meshkov–Glick (LMG) model [18].
The Hamiltonian of the Lipkin model is a quadratic element in the enveloping algebra of
su(2). Our main purpose is to test the practicality of the equations-of-motion technique. We
will find numerical solutions for the Lipkin model problem, even when the dimension of the
representation space approaches an infinite value. For a large representation space, the Lipkin
model exhibits a quantum phase transition from one harmonic oscillator vibrational phase
with nondegenerate energy levels to another harmonic oscillator vibrational phase with each
level twofold degenerate.

The LMG model is a tractable model that is sufficiently nontrivial to provide a useful
test case for many-body approximation methods. Many researchers in nuclear physics,
and, more recently, statistical and condensed matter science use the LMG model for this
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purpose. For example, applying the double-commutator equations-of-motion theory to the
LMG model Hamiltonian, Parikh and Rowe [19] show the limitations of the simple random
phase approximation (RPA) and the improvements that can be gained by a renormalized
RPA [12] in the neighborhood of the critical point. More recently, Takahara, Tohyama and
Schuck test an extended RPA derived from time-dependent Hartree-Fock plus ground state
correlations in the LMG model [20]. In other work, Harada studies LMG Brueckner theory
[21], Abraham and Vary calculate a LMG effective interaction [22], Castaños, López-Peña and
Hirsch investigate classical phase transitions using coherent states [23], Severyukhin, Bender
and Heenen show a discretized generator coordinate method works effectively for the LMG
model [24], and Cui, Li and Yi investigate geometric phases [25]. These are but a sampling
of the many investigations using LMG reported in nuclear structure physics. Applications to
other fields include Bose–Einstein condensation [26], the statistical physics of spin systems
[27], the LMG thermodynamic limit [28] and quantum information theory [29–32]. The
objective of several recent papers is the determination of LMG properties for large particle
number.

The LMG Hamiltonian is solvable using the Bethe ansatz [33, 34]. Indeed the LMG model
falls into the category of Richardson–Gaudin models for which eigenvalues are solutions to a
coupled set of rational algebraic equations [35, 36]. Although these methods do not yield all
results of interest, they have been shown to determine the low-energy spectra of many models
for which a computation by matrix diagonalization is not possible.

A representation space H of a spectrum-generating algebra g is an invariant subspace
of any Hamiltonian in its enveloping algebra U(g). If the representation is a direct sum of
irreducible representations, say when g is compact, then the general problem of finding the
energies and matrix elements simplifies to the special case of an irreducible representation, an
assumption we adopt.

The Lipkin Hamiltonian has some special properties which will be exploited, yet these
are generally insufficient to easily find analytic solutions.

The equations of motion of the u(n) SGA and the Hamiltonian eigenvalue problem on an
n-dimensional Hilbert space are mathematically equivalent in the same way as the Heisenberg
and Schrödinger formulations of quantum mechanics are equivalent. Compared to standard
numerical methods for solving the u(n) SGA nonlinear system, Jacobi matrix diagonalization
is the superior computational tool when n is not excessively large. It may also be the preferred
method when one has a reasonable ordered basis in which to diagonalize so that an expansion
of the eigenstates in the basis is sufficiently rapidly convergent.

The equations-of-motion method is computationally favorable compared to matrix
diagonalization when the dimension of the SGA is small compared to the dimension n of
the representation space. For the LMG Hamiltonian, the SGA is the three-dimensional su(2)

algebra. The dimension n of a LMG representation space of interest is much larger than three.
As computational procedures for quantum mechanical problems, equations-of-motion and

matrix diagonalization are quite distinct. The most important difference is that the primary
objects of the diagonalization approach are stationary states and energy eigenvalues, whereas,
those of the equations-of-motion approach are dynamical quantities, such as transition matrix
elements and energy differences.

Note that the SGA approach does not require knowledge of the basis states for the irreps
concerned which, in any a priori defined basis, will generally be mixtures of states from the
many equivalent irreps available. If the Hamiltonian is an element of the universal enveloping
algebra of any spectrum-generating algebra, then its entire spectrum can be derived, at least
in principle, by equations-of-motion methods in this way. Moreover, when Ĥ ∈ U(g), an
equations-of-motion solution determines absolute energies by evaluation of Hamiltonian’s
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expectation with respect to the ground state, cf, equation (18) for the LMG ground state
energy.

Although the diagonalization method, when it can be carried out, has numerous
advantages, particularly when there is an ordered symmetry-adapted basis in which the
eigenstates of the Hamiltonian have reasonably rapidly convergent expansions, the equations-
of-motion method has the huge advantage in general of not requiring a pre-defined basis; thus,
when we seek approximate solutions to equations (1) and (2). To calculate accurately low-
energy spectra, a solution to the equations of motion for the entire Hilbert space is unnecessary.
It is sufficient to solve the equations in a subspace of dimension p spanned by the p lowest
energy eigenstates of interest, where p � dimH. For example, in one calculation in this
paper, p = 6 and dimH = 1 000 000.

By sacrificing exhaustive information about every eigenstate, most of which is of
secondary or no interest, and focusing on the low-energy states, the equations-of-motion
method achieves a dramatic improvement in computational speed compared to matrix
diagonalization. If the dimension of the Hilbert space is so large that matrix diagonalization is
a practical impossibility, equations of motion may provide a tractable method to attain usable
results for eigenvalues and matrix elements.

2. Lipkin–Meshkov–Glick model

The complexification of the su(2) algebra is spanned by S0, S+, S−. A su(2) unitary
representation π requires that π(S0) = Ŝ0 is Hermitian, that the Hermitian adjoint of
π(S+) = Ŝ+ is π(S−) = Ŝ−, that

Ŝ0 = Ŝ
†
0 (3)

Ŝ− = Ŝ†
+, (4)

and that the commutation relations are obeyed,

[Ŝ0, Ŝ+] = Ŝ+ (5)

[Ŝ0, Ŝ−] = −Ŝ− (6)

[Ŝ+, Ŝ−] = 2Ŝ0. (7)

An su(2) irreducible representation is labeled uniquely by its dimension N + 1, for
N = 2J = 1, 2, . . .. In the Lipkin model, the physical interpretation of N is the number
of fermions. The results of this paper do not depend on this particular physical interpretation
and apply to su(2) dynamical symmetry problems which can arise in other physical situations.

The LMG model Hamiltonian is the self-adjoint operator

Ĥ (α) = (1 − α)Ŝ0 +
α

N

(
Ŝ2

+ + Ŝ2
−
)
, (8)

where α is a real number in the interval [0, 1]. The commutator of the Hamiltonian with the
Ŝ+ operator is

[Ĥ (α), Ŝ+] = (1 − α)Ŝ+ − 2α

N
(Ŝ−Ŝ0 + Ŝ0Ŝ−). (9)

Our parameterization by α of the LMG Hamiltonian differs slightly from the conventional
and original choice of Lipkin, Meshkov and Glick [18], but it has the advantage of interpolating
between two distinct quantum phases [37], one characterized by Ĥ (α = 0) = Ŝ0 and the other
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determined by Ĥ (α = 1) = (
Ŝ2

+ + Ŝ2
−
)/

N . The α = 1 phase is invariant under the ‘time-
reversal’ transformation, Ŝ0 → −Ŝ0 and Ŝ± → −Ŝ∓, while the α = 0 phase is not invariant.
This difference accounts ultimately for the qualitative difference between the two excitation
spectra: Ĥ (α = 0) is nondegenerate, while Ĥ (α = 1) is exactly twofold degenerate when N
is odd and asymptotically twofold degenerate when N is even in the large N limit.

Equations (3)–(7), (9) do not form an independent set. The unitarity conditions (3) and (4)
plus the commutator (5) imply the commutation relation (6). Other commutators, including
double and triple commutators, involving the Hamiltonian and the algebra generators are
not functionally independent conditions. The commutator [Ĥ (α), Ŝ−] is a consequence of
equations (3), (4), (9), and the commutator of the LMG Hamiltonian with Ŝ0 follows from
equations (3), (4), (7), (9) and the Jacobi identity.

Suppose vi is an eigenvector of the self-adjoint Hamiltonian belonging to the real
eigenvalue εi for i = 1, 2, . . . , N + 1. Without loss of generality a set of eigenvectors
{vi} may be chosen to form an orthonormal basis. Denote the matrix elements of the su(2)

operators, relative to such a basis, by (Sµ)ij = 〈vi |Ŝµvj 〉 for µ = 0,±. The eigenvectors,
eigenvalues and matrix elements depend on the parameter α.

The LMG Hamiltonian has two special properties which impose restrictions on the matrix
elements. Consider the standard orthonormal basis |M〉,M = −J,−J + 1, . . . + J , of
eigenstates of Ŝ0 = H(α = 0) belonging to the eigenvalues M. Since the matrix of the LMG
Hamiltonian with respect to the standard basis is real symmetric, it can be diagonalized by
a real orthogonal matrix. Hence the matrix elements (Sµ)ij with respect to the eigenenergy
basis result from a real orthogonal transformation and must also be real for µ = 0,±. The
unitarity conditions (3) and (4) imply that the matrix representing S0 is real symmetric, and
the matrix representing S− is the transpose of the matrix representing S+,

(S0)ij = (S0)ji , (10)

(S−)ij = (S+)ji . (11)

Another simplifying property is that the representation space is a direct sum of two
invariant subspaces of the Hamiltonian, one subspace Vo spanned by the standard basis vectors
|M〉 for M = −J,−J + 2,−J + 4, . . . [J − 1, J ] and the other subspace Ve spanned by |M〉
for M = −J + 1,−J + 3,−J + 5, . . . [J − 1, J ]. Each eigenvector vi is in one or the other
subspace. We choose v1, v3, v5, . . . to be in Vo and v2, v4, v6 to be in Ve. Since each subspace
is invariant under the action of Ŝ0, the matrix elements of this operator connecting states in
two different subspaces are zero. Similarly, Ŝ+ and Ŝ− map Ve to Vo and map Vo to Ve. These
operators, therefore, have zero matrix elements connecting states in the same subspace. Thus,
the matrix elements satisfy

(S0)ij = 0 for i + j odd (12)

(S±)ij = 0 for i + j even. (13)

The energies and matrix elements must satisfy the commutation relations, equations (5),
(7), (9):

0 =
√

Nf
(1)
ij = (S+)ij −

∑
k

((S0)ik(S+)kj − (S+)ik(S0)kj ), for i + j odd (14)

0 =
√

Nf
(2)
ij = 2(S0)ij −

∑
k

((S+)ik(S+)jk − (S+)ki(S+)kj ), for i + j even and i � j

(15)
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0 =
√

Nf
(3)
ij = ((εi − εj ) − (1 − α))(S+)ij

+
2α

N

∑
k

((S+)ki(S0)kj + (S0)ik(S+)jk), for i + j odd. (16)

Note that only energy differences occur in equation (16). The (N + 1)-dimensional
representation is required to be irreducible. Because the su(2) Casimir is a multiple of
the identity if and only if the representation is irreducible,

0 = f
(4)
ij =

∑
k

(
(S0)ik(S0)kj +

1

2
(S+)ik(S+)jk +

1

2
(S+)ki(S+)kj

)/
N(N + 2) − 1

4
δij ,

for i + j even and i � j . (17)

Equations (14), (15), (17) do not form an independent set. Indeed, when the Casimir equation
is satisfied merely for one diagonal entry, say i = j = 1, it must be satisfied for all i, j on the
(N + 1)-dimensional space when the commutation relations (14) and (15) are obeyed.

Equations (14)–(17) are a system of algebraic equations of quadratic degree in the
unknown energy differences εi − εj and matrix elements (S0)ij , (S+)ij . There exists a
solution to the system because the irreducible su(2) representation exists and the self-adjoint
Hamiltonian can be diagonalized. Even when the energy spectrum is nondegenerate, the
solution to the system is not quite unique because there remains flexibility in phase factor
choices and the energy eigenvalues are unordered.

When α = 0, a solution is well known because the LMG Hamiltonian is Ŝ0. The excitation
spectrum is the set of integers 1, 2, 3, . . . N , and the energy eigenvalues may be arranged in
ascending order, ε1 � ε2 � · · · � εN+1 with εi = i − 1. Since only energy differences
are relevant, we are free to conventionally set the ground state energy ε1 equal to zero. The
corresponding ordered eigenvectors v1, v2, v3, . . . alternate between vectors in the subspaces
Vo and Ve. Due to continuity, there exists a neighborhood of positive α that maintains the
eigenvalues in ascending order while the eigenvectors alternate between the two subspaces.
Our calculations will show that this neighborhood extends to α = 1.

When the Hamiltonian is in the enveloping algebra, an SGA solution provides the needed
information to compute absolute energies. To find the ground state binding energy Egs for the
LMG problem, evaluate the ground state expectation of the Hamiltonian operator, an element
of the universal enveloping algebra,

Egs = (1 − α)(S0)11 +
α

N

∑
k

((S+)1k(S+)k1 + (S+)k1(S+)1k) . (18)

3. Approximation

The fastest way to solve the equations of motion when the Hilbert space is finite and of relatively
modest dimensions is by diagonalization of the Hamiltonian matrix in a standard basis and
making the corresponding unitary transformations. However, our concern in developing the
RRKK equations-of-motion methods is with the solution of problems for which the space is
too large for the computational facilities available and/or for which a standard basis may make
truncation to a manageable subspace questionable. For example, to diagonalize the Lipkin
model in a basis in which Ŝ0 is diagonal requires a basis that is considerably larger than J/2.

The computational benefit to the RRKK equations-of-motion scheme arises when the
unknowns are limited to a small subset of the total. For our purposes, the objective is to
calculate the properties of the p lowest-energy states of the model. Therefore, the subset of
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unknowns is restricted to just this segment of the entire spectrum. The subset of unknowns
consists of the first p − 1 excitation energies, ε1 = 0 � ε2, . . . ,� εp, and the entries of the
p × p block submatrices, (S0)ij and (S+)ij for 1 � i, j � p, subject to the constraints of
equations (10), (12), (13). When p is even the total number of unknowns is (3p2 + 6p − 4)/4;
for p odd, the number is (3p2 + 6p − 5)/4. For example, if the dimension of the LMG
representation space H is a million, then the total number of unknowns in this space is about a
trillion; for an equations-of-motion calculation limited to the ground state and the lowest five
excited states, there are thirty-five unknowns.

With fewer unknown excitation energies and matrix elements, fewer equations are needed
to determine them. Since no attempt is made to calculate matrix elements outside the p-
dimensional subspace, the candidates for useful equations of motion, f

(σ)
ij = 0, are limited to

1 � i, j � p.
Each of the equations of motion, equations (14)–(17), involves an intermediate state

summation from k = 1, . . . , dimH. The matrix elements connecting the p-dimensional
block to its complementary (dimH − p) dimensional subspace cannot all be zero or else the
p-dimensional block would be a proper subrepresentation, a contradiction to the assumption
that the representation space H is irreducible. Because the approximation restricts perforce
each summation to a maximum k = p < dimH, the intermediate state sums, in general, are
not evaluated exactly. For example, in equation (14), the error in the intermediate state sum
for the equation of motion

√
Nf

(1)
ij , 1 � i, j � p, is

dim H∑
k=p+1

((S0)ik(S+)kj − (S+)ik(S0)kj ). (19)

If a particular summation, limited to a maximum k = p, introduces an unacceptably poor
approximation into an equation of motion, then that equation must be eliminated from the
set of determining equations. Because there are more equations of motion than unknowns, it
is possible to exclude some equations and have enough remaining to determine an accurate
solution in a p − q > 0 subspace, for some value of q, of the p-dimensional space used for
the RRKK computation.

A reliable equation of motion contains an intermediate state sum involving matrix elements
that are negligibly small whenever they connect states within the p block to those outside it.
For the RRKK method to yield accurate solutions, the following condition on matrix elements
proves to be sufficient: for any ε > 0, there exists positive integers p > q such that, for
µ = 0,±,

|(Sµ)ik| <
ε

|i − k| for all 1 � i � p − q, k > p or 1 � k � p − q, i > p.

(20)

When the matrices of the Lie algebra operators in the basis which diagonalizes the Hamiltonian
are approximately sparse band matrices, the above condition is satisfied. But the matrices need
not be band matrices for the complete basis because the properties of the matrices within the
complementary (dimH − p) dimensional block are irrelevant to the approximation scheme.

To attain an accuracy consistent with the choice of ε, the useful equations of motion,
f

(σ)
ij = 0, may be limited to 1 � i, j � p − q. When the dimension of H is large, the error

due to a typical summation term is roughly∣∣∣∣∑
k>p

(Sµ)ik(Sν)jk

∣∣∣∣ �
∑
k>p

ε2

|k − i||k − j | ∼ ε2
∞∑

k=1

1

k2
= ε2π2/6. (21)
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The accuracy of the solution depends on ε, and the computational speed depends on p,
which sets the number of unknowns, and q, which limits the number of equations. The value
of p − q must yield more independent equations of motion than unknowns. Depending on
the accuracy required for a particular application, there is a trade-off chosen by the researcher
who must mind his p’s and q’s.

The calculations reported in the next section show that the matrices of the su(2) Lie
algebra elements in the basis which diagonalizes the LMG Hamiltonian are band matrices.
Their largest matrix elements are located on the diagonal, and nearby superdiagonals and
subdiagonals. The LMG computations demonstrate that matrix elements (Sµ)ik are negligibly
small for our purposes when |i − k| � 4.

Since no exact solution to the equations of motion in the p-dimensional subspace exists,
we seek approximate solutions by minimizing the nonnegative objective function,

F =
4∑

σ=1

p∑
i,j=1

w
(σ)
ij

(
f

(σ)
ij

)2
, (22)

where w
(σ)
ij is a weight factor. The domain of the objective function is the set of all unknowns

in the p-dimensional subspace. The weight function is used to increase the importance of
the more reliable equations with small i, j relative to those equations near the edge of the
p-dimensional subspace. The weight function effectively allows us to make q somewhat
smaller and still retain sufficient accuracy. With some exceptions we take w

(σ)
ij = 1/

√
ij in

the calculations. The exceptions take the weight function as zero for certain equations at or
adjacent to the boundary:

w
(σ)
ij = 0




σ = 1 : i + j > 2p − 2 or i + j even or i = p or j = p

σ = 2 : i + j > 2p − 2 or i + j odd or i > j

σ = 3 : i + j > 2p − 3 or i + j even or i = p or j = p

σ = 4 : i �= j or i = j > p − 2.

(23)

This choice for the weight function was discovered by numerical experimentation in the LMG
model for the cases p = 5 − 10. We make no claim that this weighting optimizes accuracy
and performance, but it gets the job done.

4. Results

We solve approximately the equations-of-motion system by using a modified Levenberg–
Marquardt algorithm that minimizes the objective function, equation (22). The algorithm
requires an initial estimate of the solution. When α = 0 the Hamiltonian simplifies to Ŝ0

and the solution is analytic. The exact solution for α = 0 is used as an initial estimate for
α = 0.01. The numerically determined solution for α = 0.01 is used as the initial estimate
for α = 0.02 and so on. In this way numerical solutions are found for any positive value of
α. On a notebook computer, application of the equations-of-motion method for p = 6 and α

ranging from 0 to 1 in increments of 0.01 takes a few seconds when N < 100.
An exact initial starting point, such as readily available in the LMG model at α = 0, is not

required for the minimization algorithm. When the matrix elements and energies at α = 0 are
shifted from their exact values to random numbers, the correct objective function minimum of
zero is found invariably by the algorithm provided each shifted initial value is within a factor
of 2 of the exact answer. Thus a rough estimate of matrix elements and energies is sufficient
to start a successful equations-of-motion calculation.

For 5 � p � 10 and N � p − 1, table 1 lists the number of unknowns and the number of
equations of motion, taking into account equation (23). When N � 3 the equations of motion
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Table 1. For various subspace dimensions p, the table provides the number of unknowns and the
number of independent equations of motion.

p Unknowns Equations

5 25 27
6 35 39
7 46 56
8 59 73
9 73 95

10 89 117

Table 2. Comparison between excitation energies computed by diagonalization and calculated
from equations of motion for α = 0.3, dimH = 300 and various subspace dimensions p.

Diagonalization p = 5 p = 6 p = 7 p = 8 p = 9 p = 10

0.375 220 0.375 220 0.375 220 0.375 220 0.375 220 0.375 220 0.375 220
0.766 779 0.766 767 0.766 780 0.766 780 0.766 780 0.766 780 0.766 780
1.172 958 1.173 608 1.172 939 1.172 959 1.172 959 1.172 959 1.172 959
1.592 432 – 1.593 260 1.592 405 1.592 433 1.592 432 1.592 432
2.024 141 – – 2.025 139 2.024 106 2.024 142 2.024 141
2.467 211 – – – 2.468 372 2.467 169 2.467 213
2.920 910 – – – – 2.922 223 2.920 859
3.384 605 – – – – – 3.386 063

may be solved easily without any approximations in the space H, i.e., p = dimH = N + 1;
in such trivial cases, the summations are evaluated exactly and the weight function w

(σ)
ij = 1.

When p � 4 and N > 3, the weight function of equation (23) yields fewer independent
equations than unknowns and solutions to the equations of motion are undetermined.

For α = 0.3 and N = 2J = 299, table 2 lists the low-energy excitation spectrum
calculated by diagonalization and, for several subspace dimensions p, by the equations-of-
motion method. The value of the objective function F for the calculations in this table is
always smaller than 1.4 × 10−8. The computation time is greatest for p = 10 and, on a
notebook computer, is 35 s. Accurate to the seven significant digits shown in the table,
energies determined via diagonalization provide reference values. The RRKK lowest (p − 4)

excitation energies are accurate to better than two parts in a million. Up to the (p − 3) level,
the accuracy is no less than 3 parts in 105; the (p − 2) excitation energy is correct to 4 parts in
ten thousand. Due to the zeros of the weight function, the highest (p − 1) excitation energy
is undetermined by the equations of motion and is not listed in the table. Thus the numerical
accuracy of the low-lying excitation energies computed via equations of motion improves as
the subspace dimension p increases.

Tables 3 and 4 show the values of the matrix elements of (S0)ij and (S+)ij involving low-
energy states calculated by unitary transformation following diagonalization and by equations
of motion for α = 0.3. The RRKK calculations give improved results as p increases. The
accuracy of the matrix elements is comparable to that of the excitation energies. Both (S0)ij
and (S+)ij are nearly sparse band matrices. Since the dominant matrix elements are confined
to the main diagonal and the second diagonal above and below the main diagonal, the matrix
(S0)ij is approximately pentadiagonal. The matrix (S+)ij is approximately tridiagonal.

For α = 0.7 and dimH = 300, the character of the solution changes from the α = 0.3
results. The low-energy levels are twofold degenerate to an accuracy of one part in 108.
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Table 3. Matrix elements of S0 calculated from the equations of motion for α = 0.3, dimH = 300
and subspace dimensions p = 6, 8, 10 are compared to diagonalized values.

Dimension (S0)11 (S0)13 (S0)15 (S0)22 (S0)24 (S0)33 (S0)35 (S0)44

p = 6 −149.0611 −1.111 450 0.020 7250 −147.2509 −1.849 612 −145.5580 −2.523 849 −143.9587
p = 8 −149.0611 −1.111 450 0.020 7384 −147.2509 −1.849 628 −145.5580 −2.523 951 −143.9537
p = 10 −149.0611 −1.111 450 0.020 7384 −147.2509 −1.849 628 −145.5580 −2.523 950 −143.9537
Diag. −149.0611 −1.111 450 0.020 7385 −147.2509 −1.849 629 −145.5581 −2.523 951 −143.9537

Table 4. Matrix elements of S+ calculated from the equations of motion for α = 0.3, dimH = 300
and subspace dimensions p = 6, 8, 10 are compared to diagonalized values.

Dimension (S+)12 (S+)21 (S+)23 (S+)32 (S+)14 (S+)41 (S+)34 (S+)43

p = 6 −11.412 36 20.695 98 −15.424 98 28.816 47 −0.019 3243 −0.202 6039 −18.140 06 34.819 12
p = 8 −11.412 36 20.695 98 −15.424 99 28.816 47 −0.019 3270 −0.202 6011 −18.139 37 34.819 04
p = 10 −11.412 36 20.695 98 −15.424 99 28.816 47 −0.019 3270 −0.202 6011 −18.139 37 34.819 04
Diag. −11.412 37 20.695 98 −15.425 00 28.816 47 −0.019 3270 −0.202 6013 −18.139 37 34.819 05

The first six energy eigenvalues are as follows: 0, 0, 1.925 2507, 1.925 2507, 3.834 9946,
3.834 9946. Within the p = 6 subspace, the matrix elements of the su(2) generators for
α = 0.7 are

S0 =




−32.192 0 10.163 0 0.224 0
0 −32.192 0 10.163 0 0.224

10.163 0 −32.511 0 14.351 0
0 10.163 0 −32.511 0 14.351

0.224 0 14.351 0 −32.840 0
0 0.224 0 14.351 0 −32.840




,

S+ =




0 −145.957 0 4.929 0 0.385
145.957 0 −4.929 0 −0.385 0

0 −9.425 0 −144.789 0 6.909
9.425 0 144.789 0 −6.909 0

0 0.068 0 −13.331 0 −143.615
−0.068 0 13.331 0 143.615 0




.

These matrix elements are quite different from the α = 0.3 values listed in tables 3 and 4.
When the equations-of-motion procedure increments α in small steps from 0.3 to 0.7, the
matrix elements evolve slowly from their values listed in tables 3 and 4 to the above matrices.
For any finite value of N the matrix elements all evolve continuously, even if rapidly in the
transition region, as functions of α.

For α = 0.3, S0’s diagonal elements dominate with a value close to −j = −N/2; for
α = 0.7, the magnitude of the diagonal elements is reduced to about −j/10 and the matrix
elements on the second diagonal are about one-third of the diagonal values. Yet S0 at α = 0.7
remains approximately a sparse band matrix. The S+ matrix for both α = 0.3 and 0.7 is
tridiagonal, but the magnitudes of the entries are qualitatively different. The magnitudes of
the off-diagonal entries of S+ at α = 0.7 are as large as the diagonal entries of S0 at α = 0.3.
The matrix elements of S0 and S+ at α = 0.7 show an interesting doubling that is associated
with the twofold degeneracy of the energy spectrum.

The twofold degeneracy of the low-energy spectrum at α = 0.7 and N = 299 is an
interesting phenomenon which depends on the large particle number N. Figure 1 shows the
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Figure 1. low-energy LMG spectra for N = 10, 20.

low-energy spectra when the particle number N has the small values 10 and 20. When N = 10
the ground state is twofold degenerate for α > 0.6 and the first excited state becomes nearly
degenerate as α approaches 1. When N = 20, the twofold degeneracy is evident for sufficiently
large α. Although not apparent from the figures, the LMG spectra are never exactly twofold
degenerate for α < 1, but can be approximately so to high precision.

For N = 299 particles, figure 2 shows a transition over the interval from α ≈ 0.3 to
α ≈ 0.4 in which the nondegenerate spectra change quickly to a twofold degenerate spectrum.
A plot of energy differences (εi+1 − εi) versus α demonstrates that, excluding a small interval
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Figure 2. LMG low-energy spectra and energy differences for N = 299.

near α = 0.4, the spectrum is that of a near perfect harmonic vibrator. The frequency of the
nondegenerate spectrum decreases as α changes from 0 to about 0.3; the frequency of the
twofold spectrum increases as α changes from about 0.4 to 1.

Figure 3 shows excitation energy levels and energy differences calculated with RRKK
equations of motion for N = 1000 000 particles. An unambiguous quantum phase transition
occurs at α = 1/3 in which the system changes from one phase, a nondegenerate harmonic
vibrator, to a second phase, a twofold degenerate harmonic vibrator. A major advantage to
equations of motion is that computation time, except in a small neighborhood of a critical
point, does not depend on the dimension of the irreducible representation space.
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Figure 3. LMG low-energy spectra and energy differences for N = 1 000 000.

Computation time can increase dramatically near a phase transition point because
many tiny step sizes are required to pass continuously from one phase to another. To
regain computational speed, a phase transition calculation can be done in two separate fast
applications, one starting to the left of the transition and ending at the critical transition point
and another starting to the right of the transition and also ending at the critical point. The
two separate calculations join at the transition point. This two part calculation was done for
N = 1 000 000 and total computation time was about a minute on a notebook computer. In
section 4.2 we report in the large N limit an estimate for the starting point data at α = 1 which
was used in the two part computation. In fact, the asymptotic approximations given for large N
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in sections 4.1 and 4.2 provide a reasonable startup for any α, excluding a small neighborhood
of the critical point α = 1/3.

4.1. Analytic approximation for large particle number N and small α

When the number of particles is large, the random phase approximation achieves an accurate
formula for low-energy states. For the LMG model, this approximation is conveniently
expressed in terms of a Heisenberg–Weyl boson algebra hw(1), spanned by the identity I and
the bosons a, a† for which [a, a†] = I . The boson mapping, Ŝ+ → √

Na†, Ŝ− → √
Na and

Ŝ0 → a†a−(N/2)I , is then obtained from the well-known Dyson representation [56] of su(2)

and is valid for large N and on a subspace spanned by states with M values close to −N/2. When
α = 0, the Hamiltonian is Ŝ0 and the low-energy spectrum equals the spectrum of the boson
number operator a†a, namely, the integers. The Heisenberg-Weyl hw(1) approximation to the
su(2) algebra is valid on the proper subspace spanned by eigenstates of Ŝ0 with eigenvalues
close to −j = −N/2 when N is large.

For small positive α and large N, the excitation spectrum of the Hamiltonian Ĥ (α) is
approximately the same as that of the operator

ĥ1(α) = (1 − α)a†a + α(a†a† + aa) (24)

in the hw(1) enveloping algebra. By making a canonical transformation to new bosons,

b† = cosh ηa† + sinh ηa b = cosh ηa + sinh ηa†, (25)

the boson Hamiltonian is expressed as a boson number operator plus a constant,

ĥ1(α) = ω1b
†b + const., (26)

when the parameter η satisfies

ω1 cosh 2η = 1 − α ω1 sinh 2η = 2α. (27)

The solution for the vibrational frequency is

ω1 =
√

(1 + α)(1 − 3α). (28)

Therefore the harmonic spectrum of the boson approximation to Ĥ (α) is

εi+1 = ω1i, for i = 1, 2, 3, . . .. (29)

For N = 106 the difference between the boson approximation to the energy and the
RRKK calculation shown in figure 3 is less than one part in a million for the interval
0 � α < 1/3 − 10−5. Note that the analytic approximation gives the correct location of
the phase transition at α = 1/3. For fewer particles and smaller dimensional representation
spaces, the analytic approximation is useful for smaller α.

4.2. Analytic approximation for large particle number N and α ≈ 1

To approach the phase transition from the right side, the minimization algorithm that finds
RRKK solutions requires a starting estimate, say at α = 1. For α ≈ 1, the LMG Hamiltonian,
Ĥ (α), can be solved in the asymptotic limit of large N using the shifted harmonic oscillator
approximation [57]. To motivate and guide this approximation, figure 4 shows the ground
state amplitudes of Ĥ (α) with respect to the standard su(2)M basis in the subspace Vo when
N = 2J = 600 and α = 1.0, 0.6. The amplitudes of M and its neighbors M ± 2 differ in sign.
The envelopes of the absolute values of the amplitudes appear to be Gaussian. The α = 1
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Figure 4. Histograms showing ground state amplitudes in the standard M basis for N = 600 and
α = 1.0, 0.6.

distribution is centered at M = 0, while that of the α = 0.6 amplitudes is shifted to the left
around M ≈ −100. The distributions are seen to be relatively narrow. For larger values of N
(not shown) they are even narrower.

The SHA shows that, in the large-N asymptotic limit, the amplitudes obey a differential
equation whose solution is a Gaussian function. For α ≈ 1, suppose |ψ〉 is a low-energy
eigenstate of Ĥ (α) belonging to the eigenvalue E, and let x = M/J � 1. To find the
differential equation, first change the standard basis to |x〉 = ±|M〉 by choosing phase signs
so that all the amplitudes, ψ(x) = 〈x|ψ〉, are positive. When x � 1, the matrix elements of
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the su(2) operators in the new basis are approximately

〈x|Ŝ0|ψ〉 = N

2
xψ(x)

〈x|Ŝ2
+|ψ〉 ≈ −N2

4
(1 − x2)ψ

(
x − 4

N

)
(30)

〈x|Ŝ2
−|ψ〉 ≈ −N2

4
(1 − x2)ψ

(
x +

4

N

)
.

By making Taylor series expansions for the amplitudes ψ
(
x ± 4

N

)
, the Hamiltonian eigenvalue

problem is approximately equivalent to the following differential equation for the amplitudes,

Eψ(x) = (1 − α)
N

2
xψ(x) − Nα

2
(1 − x2)

(
ψ(x) +

8

N2

d2ψ

dx2
(x)

)
(31)

= −4α

N
(1 − x2)

d2ψ

dx2
(x) +

Nα

2
((x − x̄)2 − x̄2 − 1)ψ(x), (32)

where

x̄ = −1 − α

2α
. (33)

This Schrödinger-like equation has a harmonic oscillator potential well, which is deep and
narrow for large N. In the asymptotic limit, the solutions ψ(x) are near zero outside a narrow
interval centered at x = x̄. This concurs with the numerical calculations shown in figure 4.
Only a small error will result if the x-dependent coefficient of the second derivative is replaced
by a constant,

1

2B

d2ψ

dx2
(x) +

1

2
Bω2

2(x − x̄)2ψ(x) =
(

E +
Nα

2
(x̄2 + 1)

)
ψ(x), (34)

where B = 2αN/((3α − 1)(α + 1)) and

ω2 =
√

2(3α − 1)(α + 1). (35)

Hence, in the SHA, the excitation energies are

εi+1 = ω2i for i = 1, 2, . . . . (36)

For N = 106 the SHA and the RRKK numerical calculations of figure 3 for the low-energy
excitation spectrum agree to within one part in 106 over the interval 0.34 < α � 1. Note that
the SHA for large particle number yields the correct location of the quantum phase transition
at α = 1/3.

The starting estimates at α = 1 for the LMG su(2) operators in a small p-dimensional
subspace spanned by the least energy states are the following band matrices:

Ŝ0 =




0 a2I 0 · · ·
a2I 0 a4I · · ·
0 a4I 0

. . .

...
...

. . .
. . .


 , a2

i = N

2
√

8
i, I =

(
1 0
0 1

)

Ŝ+ =




b0J −a1J 0 · · ·
a1J b1J −a2J · · ·

0 a2J b2J
. . .

...
...

. . .
. . .


 , bi = N

2
− i, J =

(
0 −1
1 0

)
.
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Figure 5. Log–Log plot of excitation energy at the critical point versus the number of fermions.

4.3. Critical exponents

At the critical point α = 1/3, asymptotic scaling properties, with respect to the number of
fermions N → ∞, are of considerable interest in statistical physics. Equations of motion
provide an effective tool for revealing scaling dependences of excitation energies and matrix
elements because the RRKK method determines solutions for large particle number.

If a positive quantity, denoted by Q, obeys an asymptotic power law with a critical
exponent c,

Q/Nc N→∞−→ A, A = constant, (37)

then log Q depends linearly on log N ,

log Q
N→∞∼ c log N + log A. (38)

The asymptotic slope of a log Q versus log N plot equals the critical exponent.
Figure 5 plots the logarithm of the excitation energy ε2 − ε1 at α = 1/3 versus the

logarithm of N for N � 106. The critical exponent is −1/3 as was also obtained in [40] and
[17] for the quartic oscillator, and by Dusuel and Vidal [38] and Leyvraz and Heiss [39] for a
number of models, including the LMG. The critical exponent, −1/3, for excitation energy level
scaling has also been obtained for the U(5)-O(6) quantum phase transition in the interacting
boson model [40, 41]. The LMG and U(5)-O(6) quantum phase transitions belong to the same
universality class as the liquid–gas and ferromagnetic second-order thermodynamic phase
transitions [43].

Figures 6 and 7 plot logarithms of two typical matrix elements, −(S+)12 and −(S0)13,
evaluated at the critical point versus the logarithm of N. Again a straight line plot fits the
RRKK solutions for N � 106. The critical exponent for −(S+)12 is +2/3 and that for −(S0)13

is +1/3. The critical exponents for other matrix elements may be determined similarly by
numerical computation. Hellemans et al [42] report the deformation’s critical exponent for
the U(5)-O(6) quantum phase transition.
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Figure 6. Log–Log plot of −(S+)12 at the critical point versus the number of fermions.

Figure 7. Log–Log plot of −(S0)13 at the critical point versus the number of fermions.

5. Discussion

Although matrix diagonalization is undoubtedly a powerful tool in obtaining a theoretical
interpretation of the physical properties of many quantum mechanical systems, there are
situations in which the equations-of-motion approach is more intellectually satisfying and
more effective. First observe that a necessary condition for deriving the low-energy eigenstates
of a Hamiltonian on an infinite-dimensional Hilbert space by matrix diagonalization, is that
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there exists an ordered basis for the Hilbert space such that the sum of the squares of the
coefficients of the expansion of the low-energy eigenstates in this basis forms a sufficiently
rapidly convergent series. In practice, this usually requires that the Hamiltonian should have
a suitable system of approximate symmetries to enable the construction of such a basis and
enable determination of the Hamiltonian and other matrix elements in this basis. However,
there are situations in which no suitable precisely-defined basis is available. As figure 4
illustrates, there are LMG Hamiltonians for which the sequence of expansion coefficients
for the ground state do not begin to converge until the 300th term in the naturally-defined
basis. In such a situation, the Jacobi method, for example, of finding selected eigenstates by a
diagonalization algorithm, if it converged, would undoubtedly return highly excited states. In
contrast, the equations-of-motion approach is not constrained by the necessity of choosing a
basis.

Algebraic and other structural properties of a particular mathematical problem should
be used to solve it. This guiding principle applies to both analytic and numerical solutions.
Diagonalization algorithms, such as the Jacobi method, apply to any real symmetric matrix,
e.g., a matrix whose entries are random numbers. For a spectrum-generating algebra, the
Hamiltonian matrix is far from random and its special algebraic properties are exploited by
the equations-of-motion method and reflected in its solutions.

The RRKK method also has the attractive property that it can start with simple model
approximations and develop them into accurate results. For example, it can start with the
results of a mean-field approximation and add the fluctuation corrections of a more precise
solution.

The Lipkin–Meshkov–Glick model Hamiltonian Ĥ (α), in its large particle number limit,
shows a quantum or structural phase transition at α = 1/3 in its low-energy domain. This
striking phase phenomenon often occurs in the zero temperature thermodynamic limit of
a system by variation of a control parameter in the Hamiltonian [44–46]. The topic has
attracted the attention of many nuclear structure theorists. A historic overview of the numerous
contributions to the subject in nuclear physics is given in [11]. Some recent articles given, for
example, by [28, 42, 50–54]. Of particular recent interest are studies of phase transitions in
excited states, cf [55] and articles referenced therein. Because the efficacy of the equations-
of-motion method is not especially sensitive to the dimension of the representation space, the
RRKK technique makes it possible to compute properties, including critical exponents, for
systems with very large particle number, as we have demonstrated for the LMG model and, in
prior work, for the quartic five-dimensional oscillator [17].

How small can the dimension p of the equations-of-motion subspace be? The answer
depends on the dimension q of the subspace for which one wishes to obtain accurate results
and the level of accuracy required. More precise results generally require a higher dimension
p in order to improve the accuracy of intermediate state summations. Less tightly banded and
less sparse matrices, which represent Lie algebra generators in the eigenenergy basis, would
make it necessary to increase p. When the degree of the Hamiltonian in the enveloping algebra
is greater than the quadratic LMG operator of this paper, accurate intermediate state sums
require a larger value for p. Note that p must be greater than the number of low-energy states
that are to be studied and large enough so that the number of independent equations is greater
than the number of unknowns.

Are the Lie algebra representation matrices always band matrices? For the LMG
model the answer is ‘yes’. In fact, it is easily shown that the matrices are generally band
diagonal whenever a mean-field approximation is valid. The general conditions for the
validity of this working hypothesis of the equations-of-motion method will be explored in a
following paper. Physical considerations may support the equations-of-motion hypothesis,
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e.g., the representation of a Lie algebra generator may be interpreted physically as a transition
operator and the transition probabilities connecting low and high energy states may be known
experimentally to be small.

For large particle number N, a reasonable estimate of the solution may be derived for any
α excluding a small neighborhood centered on the critical point α = 1/3. The length δ of the
difficult interval

(
1
3 − δ

2 , 1
3 + δ

2

)
shrinks as N increases. Estimates of excitation energies are

given in equations (29) and (36). Matrix element estimates for any α, excluding the critical
point neighborhood, may be derived using the boson approximations of sections 4.1 and 4.2.

To investigate the small neighborhood around the critical point when N is large, an
equations-of-motion computation which passes continuously from α = 1

3 − δ
2 to α = 1

3 + δ
2

proceeds by making many tiny steps. The step size is of the order of 1/N .
It is important to be aware of the conditions necessary to obtain accurate results. For

example, double precision (15 significant digits) is needed for the fractional error between
S0S+ − S+S0 and S+ to be less than one part in 108, for α in the neighborhood of its critical
value, and the number of particles, N, should not exceed 107. Higher machine precision is
needed for larger numbers of particles. For example, an accuracy of one part in 108 can be
achieved on a quad precision computer (31 significant digits) for N up to Avogadro’s number
1023. For the LMG model the analytic asymptotic approximations of sections 4.1 and 4.2
are very accurate for such large particle number except in a tiny neighborhood of the critical
point. The issue of significant digits in the LMG model becomes important when a careful
study is being made of the phase transition within the tiny neighborhood of the critical point
for extremely large, but finite, N. It should be noted, however, that the increasing fractional
error with particle number can be attributed to the collapse at the critical point of the excited
states to a multiply-degenerate ground state in the asymptotic N → ∞ limit.

6. Conclusion

The equations-of-motion method is advantageous when: (1) the dimension of the quantum
Hilbert space is very large and the low-energy eigenstates of interest do not have a sufficient
rapidly convergent expansion in an ordered-symmetry adapted basis for matrix diagonalization
methods in a truncated basis to be practicable, and (2) the desired number of low-energy
eigenvalues and matrix elements (transition rates) among these states is relatively small.
In addition, for a given Hamiltonian, two mathematical requirements must be verified for
a successful application of the RRKK approximation method: the spectrum-generating
condition and a projection property.

First a spectrum-generating algebra g must be chosen for the Hamiltonian operator.
For any finite-dimensional state space, a spectrum-generating algebra exists. When the
Hamiltonian is an operator on an m-dimensional Hilbert space, the algebra u(m) is spectrum
generating. Suppose H = ∑

HijEij , where Eij denotes the m × m matrix whose sole
nonzero entry is one at the intersection of row i and column j . The complexification of the
spectrum-generating algebra u(m) is the span of the set of m2 matrices {Eij , 1 � i, j � m}.
Other choices for a spectrum-generating algebra are often possible. For example, consider the
quantum state space of a system of A fermions, viz., the exterior product space of A-copies of
an n dimensional single-particle space. Any Hamiltonian on this fermion state space is in the
enveloping algebra of the spectrum-generating algebra u(n). Although n � m, the dimension
n!/A!(n − A)! of the many-particle space, the dimension of the u(n) algebra will, in general,
be much too large for practical purposes.

Let P denote the projector onto a subspace V spanned by a chosen set of low-energy
eigenstates of physical interest, and let Q denote the projector onto a selected subspace W
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of V . The second requirement is that monomial terms in the enveloping algebra satisfies a
projection property relative to P and Q. For example, the quadratic term X̂Ŷ ∈ U(g), where
X̂, Ŷ ∈ g, is approximated within the subspace W by

QX̂ŶQ ≈ QX̂P ŶQ. (39)

The algebra commutation relations, equations (1), can be approximated, therefore, by

QX̂αP X̂βQ − QX̂βP X̂αQ ≈
∑

γ

C
γ

αβQX̂γ Q. (40)

Commutators involving the Hamiltonian, equation (2), and the Casimir polynomials must
satisfy similar projection equations.

When the matrices representing the Lie algebra elements with respect to the eigenenergy
basis are approximately band diagonal, the projector conditions can be satisfied. The projection
requirements guarantee that intermediate state summations in the commutator and Casimir
equations can be evaluated accurately by a truncated summation. In this favorable case, errors
in equations of motion created by discarding terms, e.g., those of equation (19) in the LMG
model, are negligibly small.

The spectrum-generating algebra u(m), where m is the dimension of the state space, fails
the projection property requirement because this algebra is a basis for all Hermitian operators.
Not all matrices Eij , 1 � i, j � m, can be band diagonal in the eigenenergy or any other
basis. However, in practical situations to which the equations-of-motion method applies, one
is interested in large m-dimensional representations of a spectrum-generating algebra g for
which dim g � m. In the present application, for example, we have considered representations
of dimension m, with m � 300, of the 3-dimensional LMG spectrum-generating algebra su(2)

and observe that in all cases the matrices are band diagonal to a good approximation. We
shall show in a following paper that this is a general result that follows whenever a mean-field
approximation provides a reasonable first approximation for the low-energy states of interest.

The precise general conditions for a spectrum-generating algebra to satisfy the projection
property are not known. Roughly speaking, we can say that the dimension of the algebra g

should be less than the square of the dimension of the subspace V . Otherwise the algebra
contains operators with nontrivial matrix elements connecting low and high energy states and
the projection property fails. Suppose the algebra generators can be interpreted as physically
measurable transition operators. If transitions are measured and found to be small connecting
low-energy states in W with high energy states in V ⊥, then experiment supports directly the
projection hypothesis.
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